SERVICE

For

CARE and OPERATION

MONOMELT

THE MONOMELT CO., INC. 1611-15 Polk Street N. E. Minneapolis, Minnesota

Service Manual

for

Care and Operation

of

The Monomelt System

This Manual has been compiled for the purpose of assisting those in charge of Monomelt-equipped plants to get more thorough understanding of the Monomelt and to become familiar with the functioning of the various mechanisms.

The advice given is intended to cover every phase of Monomelt care and operation, including instructions on procedure when any unusual circumstances interrupt the proper functioning of the Monomelt.

If these instructions are followed carefully and adjustments made as directed, perfect results will be attained, including the most accurate heat regulation that it is possible to secure on a line-casting or typecasting machine.

Proper Temperatures

THE MONOMELT CO., INC.

General Offices and Factory 1611-15 Polk Street MINNEAPOLIS, MINNESOTA

GRanville 2042

MAIN POT BURNERS AND GOVERNORS

Remove all burners, take them apart and clean them out thoroughly.

Main Pot Burners-Sizing the Orifices

It may be possible that the orifice or gas jet, which supplies the throat tubes, it wos untail. This should be about the size of a No. 37 towist drill. It would also be well to ascertain the size of the big burner orifact. This should be about the size of a No. 42 drill. If it is too burner is turned very low. Avoid getting these orifices too small, and on the other hand if they are too large they will give a yellow, drivy fature. If the burners are left or restored to the same condition they were when they left the Lincotype or Interrupe factors, the user that they have been also that the size of the same or the sharter on froat tubes wide open and close main burner air sharter about revolving's closed.

Balancina Main Pot and Throat Burners

In re-assembling, it is best to make a temporary connection with a piece of hose, and with the burner held in the hand on the outside of the machine, light the gas and balance the flame by turning the gas cocks so as to have all the fire necessary coming from the threat tubes to heat that part of the crucible proper.

The threat rule fame should be about 1½, or 1½ inches in length and to get this it is sometimes necessary to turn down the main burner cock enough to force more gas to the threat rules. We are now providing a regulating valve to be used in place of the ½ inch pipe plag in the borsom of the (F1937) year. The place of the down to be used in place of the down to be used to be used to be used in place of the place of the down to be used to

Cutting Off Throat Tubes

Sometimes the throat tubes are so long that they reach up to and bear against the throat of the crucible, in which case it is advisable to cut off the tube to 2% inches in length so that the gas flame will have more freedom and at the same time the heat from the tubes will distribute better.

Type "D" Governor and By-Pass

In regulating and adjusting the new Type "D"
Governor, you will observe on the side of the governor
a small fillister head screw with lock nut. This is the

by pass regulator. Run this screw out about ½ inch and thom num the regulating wheel on the governor to the tight until you have closed the burner down to a point where further movement in this direction of the governor has no effect on the flame. Then you will have the governor closed. Now run the by-pass screw in until you have reduced the size of the flame to a point where it will harely burn without backfring. At this point, set the lock nut. Now open the governor by turning the regulating wheel in the opposite Gabout 510 or 515 which will cestilish a should remain without any further depends. There it should remain without any further

The new governor may settle somewhat after it has gone through a few days of heat. It may settle about 5 or 10 degrees; hence our instructions to set it when new at 510 or 515 degrees.

To Clean Type "D" Governor

A large clean-out opening has been provided in the Type "D" governor so attention can be given this member without disconnecting any piping or removing the governor from the machines.

After removing the clean-out plug, take a piece of six-point reglet, or small stick, stretch a piece of cloth over the end, moistened in gasoline, and rub between the valve seat and end of valve, removing all accumulated carbon and the job is done without altering or affecting the governor setting.

Mouthpiece Regulating Valve

The mouthpiece regulating valve is of the needleis doing all the time. You will find it is not very sensitive to a slight movement of the valve and for the reason you can get a very close adjustment. Depend on this valve for all heat regulating to get solid sings and clear face.

Owing to the fact that the temperature in the lower pot is held down to around 500 degrees, it will sometimes be feund that on recasting small slugs it is necessary to increase the mouthpiece hear a little as the cooler metal passing through the mouthpiece on recasting has a tendency to cool it off.

Mouthpiece Burner

If the mouthpiece burner has a tendency to float and the gas jets do not cling closely to the burner, it is from lack of ventilation, or, in some cases, too much draft.

Take a piece of 1/4-inch rod or a small rat-tail file, or some other round instrument and piece the cement running up on either side of the thoust through to a point just in front of the sain air went running up an point just in front of the sain air went running up an point just de of the cruckle. This is for the purpose of supplying an air draft upwards into the regular air channel for the mouthpice humer and thus improve the hurning of this member. These holes are present in all late model Lintypes and are a part of the regular castine of the Intervere cruckles.

After you have secured a steady, uniform burning of the mouthpiece by reason of the vents above described, see that the throat tubes do not emit a flame longer than about 1½ inches and that the temperature in your main pot is held down to about 100 to 515 degrees.

HANDLING NATURAL GAS

Natural gas is not easy to handle and as this gas seems to vary as to quality and nature in different localities, some slight variations from the rule here laid down may be necessary according to the nature of the oas.

Natural gas is very light and is easily snuffed outespecially when burning in a draft as is the case with throat tubes.

Seldem will you find the threat tubes burning satisfactorily in the natural gas fields and all kinds of stunts have been restored to, such as cutting the bottom out of tobacco cans and putting them over the tubes, cutting off the tubes, squeezing the tips of the tubes to gether, cutting the tubes off on a slant one way and another, enlarging the orifice to a point where a large, yellow flame comes rolling out, etc.

A very successful way of handling this perplexing problem in the natural gas regions is a follower. Made the orifice size of the large burner the size of a No. 45 or 46 veis drill. Made the threat the orifice the size of a No. 60 veis drill and remove the air shutter. Cut off the threat these so 2 inches or a fittle less in length, square the ends up with a file. Then with the peen of a light hammer, porn the top edge of the tubes toward the inside of the tube, making a little finager around the inside at the top of the tube. This little flarge around the inside at the top of the tube. This little flarge around the inside at the top of the tube. This little flarge provided tend to take hold of the gas as it passes our and hold provided in this names will hold their own and burn turity without going our with any reasonable size main turner for burning under them.

PERFORMANCE OF NATURAL GAS IN THE MOUTHPIECE BURNER AND HOW TO CONTROL IT

The same characteristics in natural gas that make it a difficult to handle in the throat tubes also make it an uncertain performer in the most piece burner and creamast be exercised to the control of the control of the control of the former and burning up the outside of the burner and burning up the outside of the sample o

To secure successful performance of the mouthpiece burner when using natural gas, first make the gas orifice the size of a No. 60 twist drill and entirely remove the air shutter on the mixer body. Strict care must be taken regarding the mouthpiece burner air vents through the asbestos packing as minutely described elsewhere in this manual. Then before the Monomelt is attached to the pot, cut away a small portion of the Monomelt casting (this has been done on later models) at the point where it meets the lower pot back throat vent flue, so that the draft passing up through the hole through the cement packing will find easy entrance to a good draft current passing upward out the top of the Monomelt. This encourages the gas flame of the mouthpiece burner to follow it to the end of the burner and to burn lustily the entire length of the mouth burner and throw off an even heat all the way across.

MONOMELT BURNERS AND GOVERNOR

Removing Monomelt Burners and Governor The Monomelt burners and governor are held in

The Menometr Eurrers and governor are held in place by two hexagon head ¼-inch nuts. A service gas cock for the Monomelt is provided so attention can be given to the Monomelt burners without stopping operation of the machine and after disconnecting the union immediately above the service cock, the entire burner and governor mechanism can be removed with ease.

Things Which Interfere With Proper Action If metal is carelessly dumped into the Monomelt,

an and it is careered varieties and does up to auxiliary burner valve operating mechanism; operating is this true when feeding sweepings from the face around the machine. Also see that no modern north lass splashed on the valve operating lever. This lever must be free to transmit the expansion and construction to the thermostat to the auxiliary valve and if necessary remove the fulcrum pin and loosen up all moving parts, cleaning all contact points, etc.

If this falls to correct the trouble, remove your entire burner and governor assembly and cannior the governor tube for any defects and also take notice of the length of the roll inside this tube. The roll in question should be long enough to reach out nearly to the valve operating level, so that the contact point between it and the adjusting screw will be as close as possible to the fulformm pount on the operating level. Some The close tridifferent pount on the operating level, we have described, the easier the action of this mechanism. Not see registers for each joint in excessary, shorten the size.

On one side of the constant burner is a hole to provide a gas jet against the feed spout and this must be kept burning or the spout may freeze up. This is the only difference between the two burners.

At the end of all gas passages through the head of the burners is a cleanout plug.

Gas Regulating Orifice

The regulators on the adjustable orifices should not be run back beyond a point where they have a tendency to stop, as they may become damaged and regulation for size of flame ruined. They are for the purpose of regulating height of flame only and are not for regulating temperature.

FITTING MONOMELT TO OLD STYLE LINOTYPE CRUCIBLE

If yours is an old model Linespee encode having a cleanur plate on top of the throat that will not allow the Monomelt to set properly on the pot, it is only necessary to take a lammer and greatly peers back the The extens of the Monomelt is aluminum and is rather by the control of the contr

OLD STYLE LINOTYPE MACHINE USING TWO MOUTHPIECE TUBES

Locate the mouthpiece regulating valve in the customary position, removing therefrom the little orifice. On the end of this screw is an ordinary ½-inch coupling. We will now leave the mouthpiece regulating valve and give our attention to the main burner.

Branching off from the hose connection at the base of the main burner out of the top of which is the connection for valve for the main pot burner and running diagonally upward to an angle of about 45 degrees toward the front is a little 2½ or 3-inch nipple leading in to a "T" out of which on either side are common "L's" looking up into which is screwed the stop cocks, nipples, etc., for the two mouthpiece tubes.

Remove the 21/2 or 3-inch nipple and fill it full of metal, completely shutting off any flow of gas through this section. Now remove the outside "L" and in its place put a "T," screwing the mouthpiece tube into the side of the "T" which will leave this tube in the same relative position as it was when it was screwed into the "L." This leaves you the open end of the "T" looking out toward the side of the machine. You will now bring this "T" and the mouthpiece regulating valve together by using a piece of 1/4 or 1/4 e-inch coppered tubing with fittings the same as are used around an automobile or gasoline engine which can be procured at any automobile accessory house, and you have the mouthpiece burners or tubes under direct control of the mouthpiece regulating valve with as good results, nearly, as you could get with a horizontal mouthpiece burner. However, it must be remembered that the late style Linotype crucibles and pots equipped with the horizontal mouthpiece burner and late main pot burners and throat tubes are in all cases preferable to the old style, but there is no reason why excellent service cannot be attained if the burners are hooked up in the manner as described above.

There is still another way that the hookup can be made, but the mouthpiere regulating valve is not left in so handy a location. In this case we remove the 2½ or 3-inch nipsly, referred to above, and connect the regular mouthpiece regulating valve in its line, using the necessary length of nipsles to make the assembly overall of the same length. In this case you remove the former case. This makes a simpler installation, but the first described plan is preferable owing to its convenience.

CLEANING THE METAL

With the dirt paddle supplied with your Monomelt, reach into the Monomelt and draw the dross to the front end of the crucible and squeeze it through the holes with an up and down movement of the paddle, and in less than a minute's time you will observe the dirt has been separated from the dross and the meant has been reclaimed. You can then the second the second that the contract of the second that the second t

LOW METAL ALARM

There is very little chance of trouble with the low metal alarm if the Monomelt is cleaned at regular intervals. See that all dirt, metal chips and frozen crusts of metal are cleared away from the float and working parts and that the bell hammer operating trigger has plenty of freedom.

FLOODING

There is very little danger from flooding, and if it occurs it is likely to be from neglect or overloading.

Do not fill the Monomelt full. The molten metal should not be higher than to within ½ inch of the overflow. Likewise, it should not be permitted to run dry nor should the dross and dirt be allowed to accumulate in the Monomelt crucible until it is so thick that the heat cannot penetrate the mass and reach the new slugs as they are introduced.

Remove the Monomelt hopper by loosening the ¼inch round head screw on side and see that all dirt and metal crusts are cleared away from upper end of valve rod and that the rod has freedom of action.

Examine the float rod. If the pump plunger rod pin has slipped through too far, it will catch the float rod and bend it and cause a binding. Also see that the float has no interference from plunger, well or side of lower crucible.

The flat copper spring (late models have coil spring) should have a slight persourse upward against the valve lever and it is possible for this flat spring to become damaged if the Monomeler runs dry, which would permit the lower pot to run low, and the float settle until it pulled the valle lever down to a point where it might strike the end of the spring or possibly side under it, in which case you would get flooding.

STICKING PLUNGERS CAUSING POOR SLUGS

Plungers should be cleaned regularly, though these cleaning periods will not be so frequent with the Monomelt system.

Where plungers fit snugly there is likely to be an accumulation of dir around the side walls of the well near the bottom, giving the impression that the well is snaller at the bottom than at the top. Care must be taken that this accumulation is scraped of so that the plunger will continue on its descent until picked up by the cam. If the plunger settles to the bottom of the well before the cam picks it up, it is too loose and in either case a poor study will result.

Late style Mergenthaler plungers have an adjustable poor in the bottom and with this you can regulate for the proper relief of compression. A plunger when eyestain properly should settle to within 3/6 inch of the bottom of the stroke and you should regulate the will be the strong of the stroke and you should regulate the will be plungers that do not settle enough should be drilled through the bottom with a drill of sufficient size to let the plunger settle as above described, usually about a No. 47 to 32 hole to sufficient, but in no case should the compression for relieved enough to be the plungers.

INSTALLATION OF NEW CRUCIBLE

You will find the installation of a new crucible very simple. After removing the Monomelt burner, you will observe the head of a ¼-inch flathead screw. After removing this screw, disconnect the float rod and the crucible can be lifted out with a pair of pliers.

The lugs on the new crucible may be a little wide and require some dressing down with a file. Take off whatever is necessary to let the crucible slide into place comfortably without binding and reassemble the machine as it was before.

GAS PRESSURE AND PRESSURE REGULATORS

Every gas equipped plant should be provided with a suitable main line gas pressure regulator and the main gas line should be large enough to supply all machines with ease. This main line size will depend entirely upon the number of machines drawing gas from it and should be just as short and straight an spossible, with no unccessary bends or efforms. As the difference in price of the property of

The following table will serve to guide you in selecting the right size pipes and governor for your plant:

Plant of 1 to 3 Machines. 34"

Plant of 4 to 6 Machines. 1 "

Plant of 7 to 12 Machines. 11/4"

Plant of 13 to 20 Machines. 11/2"

Plant of 21 to 30 Machines. 2 "

While it is unnecessary to use a governor larger than those given in the above list for a stated number of Linotypes, the largest governer will control the gas for one or two Linotypes just as well as the smaller governor.

Taps taken off the machine gas line other than for the typesetting machines should be considered in the light of their burner capacities and due allowance made for them.

Place the pressure governor in the main line near the machines, conveniently located for periodical inspection and adjust to a pressure of not more than 3.0 nor less than 2.5

PRESSURE REGULATORS FOR BOTH ARTIFICIAL AND NATURAL GAS

We recommend for all gas pressure regulation the L & M. Sensitive Low Pressure Gas Regulator put out by the B-Line Boiler Co., of Cleveland. The number, sizes, net prices and code word for the various governors are as follows:

	Net		
lo.	Size	Prices	Code
3	34-inch	\$12.00	Terret
4	1 -inch	15.00	Terso
5	11/4-inch	17.00	Testate
6	1½-inch	19.00	Tester
7	2 -inch	23.00	Textile
8	21/2-inch .	26.00	Texture

In offices where the old style mercury gas pressure regulators are used, you will proceed as follows: provide yourself with about one-half pound of mercury and pour into the top of the regulator around the float; just a sufficient amount of mercury to seal fix-that is it as, y, when you press the float down to kee a listel gas your pass the float flow more mercury is necessary be yould this point and it is not advasable to add any more

You will weight the regulator with sufficient weight to establish a pressure of nor more than 3.0 or less than 2.2 at the machine por. After you have added a sufficient number of slugs to establish this pressure, you will remove them, put them in a halfe and melt them down and run them into one sold weight with a hole in the center about 1½ or 1½ inch as that weight will remain in the properly balanced position on the float-remain in the properly balanced position of the control of the properly balanced position of the properly bala

To find the pursue of gas in any plant where there is no pressure gauge, immerse the end of the gas hose into bucket of water, turn on the gas and withdraw the hose until the gas overcomes the water pressure and begins to except by emitting bubbles. The length of the hose remaining in the water is the equivalent of gas pressure exposed in inches.

THE EQUIVALENT OF OUNCES, PER SQUARE INCH, IN INCHES OF HEIGHT OF COLUMNS OF WATER AND MERCURY

	Inches	Inches
Ounces	of Water	of Mercury
1	1.73	.127
2	3.46	.256
3	5.20	.382
4	6.93	.510
5	8.66	.637
6	10.39	.765
7	12.12	.892
8	13.85	1.019
9	16.59	1.148
10	17.32	1.275
11	19.05	1.402
12	20.78	1.529
13	22.52	1,658
14	24.25	1.785
15	25.98	1.913
16	27.71	2.036

TO INCREASE CAPACITY OF METAL FLOW

If Monomele fails to supply sufficient metal to the lower pot when casting furniture or large, heavy slugs, loosen the spring which pulls upward against the float will be provided by the pro

TURNING OUT FIRE TO SAVE GAS

There is no good reason why the Monomelt cannot be turned off at night. It will melt down a full pot metal in about 40 minutes and the quantity of metal can be allowed to run a little low toward the close of the day so that less time will be required to melt it down in the morning.

It is not good practice to turn out the gas under the main pot of any gas heated metal pot, owing to the danger of the pot cracking as it heats up in the morning. Also all thermostat governors work at their best when kept under constant heat.

In offices where the gas is turned off at night under the lower pot, it is advisable to withdraw the cotter pin that connects the float rod to the valve lever as the shrinking of the metal in the lower pot as it cools has a tendency to pull down on the float and open the valve, and may result in a little flooding owing to the fact that the metal in the Monomelt will melt down and become fluid before the metal in the lower pot. The valve lever spring will hold the Monomelt valve closed, but do not turn the machine over until after you have replaced the cotter-pin.

VENTILATOR PIPES FOR TYPESETTING

There are laws in many states requiring the installation of vent pipes on all machines or devices using gas burners for the purpose of carrying away the poisonous carbon monoxide gas and this should be done in all cases, whether there is a compulsory law for it or not.

The installation of a Mocomelt on a typesetting machine does not make the ventilation of any more importance than on a machine without Mocomelt, but provision is made in the hopper casing of the Mocomelt, or the state of the state of the state of the state that the state time carry of any smoke or funes that may arise from the nextli in the pot of the Mocomelt. However, there is nothing of an injurious nazure in the way which is carried at as low a temperature as metal in the Mocomelor or opposition grant-disposition is carried.

In providing vent pipes for typesetting machines, and especially those on which Monomelts have been installed, care must be taken in arranging the system.

The best known system of ventilation is one which provides for an artificial draft by a motor driven fan, located some place in the pipe line which will maintain a uniform draft, but in the absence of such a device, the line can be carried into any good flue or chimney which has a good fore draft.

The lower end of the vent pipe, or that part which extends down to the Monemeria, should be of an oldoing funnel shape and not extended down over the Monomed flase, but rather setting above it with sufficient Monomel flase under the vent pipe with case. At the same time the obong funnel-shaped over pipe immediately over the Monomelt should be about five inches in length and there endes in width, to proside for the sufficient to let the second cleants but pass the pipe on its ascent and descent without interference.

Test the vent system for draft and if there is not sufficient draft to noticeably draw the flame of a burning match toward the open end of the vent pipe with the match held an inch or so from the edge of the pipe, it is not a good went. The other end of the pipe may be extending into the flue too far, or, as has been found in some cases, it may be reaching through the flue and clear up against the opposite side, which will cut off the draft.

Also examine the outlet of the flue on the roof and if the top of the chimney is below the level of some roof in close proximity, the aircurrent may be passing over this roof and down into the chimney, which will kill the draft. In a case like this, the chimney must be extended either by building higher or putting an exersion type on it. At any rate, do not overlook the importance of the contract of t

One of the signs of a poor ventilating system will be a sweating of the pipes, causing an accumulation around the joints of the pipe and formations of crusty matter along the outside of the pipe where this mosture has run down. A pipe with a good draft will remain dry and if no dampness is present in the ventilating system, there is practically no deterioration.

The reason for recommending the lower end of the ventilizing pipe to be held slightly above the top end of the Monomelt pipe is so that the draft in the ventilizing years will not create a poil on the gas burners, the properties of the properties

For instance, on days of high wind velocity there would be so much deaft that is would be dissolute to keep the gas burners lit. At the same time, the excessive deaft would have a rendency to draw the heat away from around the poss. On the other hand, on days then with no wind at all, there would not be sufficient drawt to permit of proper burning of your free and your burners would become southerney.

ELECTRIC MONOMELTS

The electric Monomelt does not greatly differ from the gas model—only in the method of heating.

the gas model—only in the method of heating.

The practice in many offices of using a renewal fuse
is not good for the season that a good firm contact
cannot be maintained between the cartridge ends and

the fuse. The fuse being of soft metal yields under pressure of the metal caps of the cartridge and the contact becomes less and less until they finally begin to arc and either burn out or set up a carbon deposit which insulates them from a contact. The heat from current passing through them tends to assist the soft fuse in yielding from the pressure of the cartridge caps. In all cases, use the old style cartridge fuse with soldered connections and never use a fuse with higher amperage than necessary to carry the load. Remember, the fuse is the "safety valve" on your electric line and is there for the purpose of protecting your heating element in case of a short or ground. Fuses are cheaper than heating elements or motors and if a fuse continues to "blow" call in an electrician and have the ground or short located before more serious damage results.

Following is a table of the correct amperage fuses to be used on the various electric pots and Monomelts:

100-110 Volt A.C.-D.C. 2 20-Amp.—1 5-Amp. 220-250 Volt A.C. 2 10-Amp.—1 3-Amp.

220-250 Volt A.C. 2 10-Amp.—1 3-Amp. 220-250 Volt D.C. 2 20-Amp.—1 5-Amp.

Above table on fuses applies to both the Linotype Cutler-Hammer pot and the Monomelt.

TO CHANGE TEMPERATURES

To increase the temperature in the Machine pot, remove the slotted cap in the rear end of the thermostat and turn the small slotted screw inside the thermosat to the right. To decrease the temperature, turn it to the left.

To increase the temperature in the Monomelt pot, remove the theremostat cover of the Monomelt pot and turn the slotted headless screw at the lower right hand corner to the right, as indicated by an arrow on the horizontal lever. To decrease the temperature, turn it to the left.

WHEN METAL DOES NOT FEED

When the metal does not feed from the Monomelt to the machine pot it is due to too low a temperature in the Monomelt pot. The Monomelt pot temperature must be between 550° and 575° F., otherwise the metal will freeze up in the Monomelt crucible spout. This condition is not due to dross.

THERMOMETERS

Good slugs, or type, are produced only at a certain definite temperature. Paper browning or burning tests are inaccurate. A good thermometer is the only positive method of determining temperatures and will save time.

REPLACING FLAT HEATING ELEMENTS

To remove the flat heating elements from the Monomelin is a very simple operation. Remove Monomelin looper and you will see the heads of four heating head rever that are abstrate for a screw driver. These screws are on the edge of the Monomelt body and extend down through the Monomelt body and extend down through the Monomelt into the grid or part that binds the elements up against the bottom of the crucible.

One or two turns of these screws is all that is necessary to losen the elements, so they can be pulled out easily from the front, after terminal wire connections have been disconnected and the two R. H. brass screws removed at battom corners of terminal hand.

To replace elements you simply reverse this operation, being careful not to pull up grid binding screws too tight.